There is a world somewhere between reality and fiction. Although ignored by many, it is very real and so are those living in it. This forum is about the natural world. Here, wild animals will be heard and respected. The forum offers a glimpse into an unknown world as well as a room with a view on the present and the future. Anyone able to speak on behalf of those living in the emerald forest and the deep blue sea is invited to join.
Body mass of the Sunda tiger (Panthera tigris sondaica):
Well folks, I like the clear data, so I made this table in this hours in order to show which are the weights that the Sunda tigers could have. Check it out:
*This image is copyright of its original author
I used the equation from Sorkin (2008) and Christiansen & Harris (2009). The skulls data base came mostly from Sody (1948) and the collection of Mazák, so if you have more skulls from other sources I can add them in order to enlarge the sample. The average Greatest Skull Length (GLS) and Condylobasal Length (CBL) is just for these samples, as we already have the larger official samples in my comparative image (published in my previous post). I decided to show the weights produced with "wild specimens only", "captive specimens only" and a mix of both. Interestingly the figures obtained from captive specimens, in the case of the Sumatran tigers, match closer with the sample of wild specimens (again, check my comparative image), so I decide to put them in bold, as these are probably closer to the real figures.
The captive Sumatran tiger specimen No. 107/37 is described as a "very meager animal" by Sorkin (1949), so its weight of 95 kg is probably somewhat low than a natural specimen, specially because it was taken after its dead (remember the case of the large Amur tigers reported by Mazák, which weights were unreliable as they were sick at the moment of its death). The formula gives a result of 103 kg, somewhat higher then the original but natural for any healthy captive Sumatran tiger. In the case of the wild Javanese tiger of 142 kg, the equation gives a number of 144 kg, very close, and that is also why I remarked the results from captive specimens. Again, it seems that Sunda tigers were somewhat lighter in comparison with Mainland tigers of similar size.
In the case of the smallest Bali tiger (252 mm in GSL), Mazák et al. (1977) clearly described it as a "subadult", however it was used by Mazák & Groves (2006) and by Yamaguchi et al. (2009), even it was included in the book "Wild Cats of the World" of Dr Hunter, so I decided to included it here, also by the fact that this was the holotype of the "subspecies", so take this in count.
This equation suggest a maximum weight of 158 kg, much lower than the maximum weight of 175 kg reported by Mazák for the South China tiger, but it is higher than the figure of about 140 kg reported by him for this population. Some ones could say that skulls are not a good predictor of weight, but if we take in count the lack of any other bone, skulls (and sometimes dentition) are the only thing that we can use. I proved with the equation of Van Valkenburg (1990) that also used CBL, but the results are too high and seems unreliable. So, the equation of Sorkin (2008) with the database of Christiansen & Harris (2005), Goodwin (1933) and Sody (1949), provided good results and for the moment, is the best I can do, with the samples that I have. If you have more data, or if there is an error in any table, please tell me and I will fix it or add your suggestions.
By the way , is important to mention that the smallest adult tiger skull is not from Bali, but from a Caspian tigress, with a GSL of just 255.5 mm and a CBL of 225 mm (Mazák, 2013).